Organ Printing--Bigger than Any Transplant Story You’ve Heard Before…
by ilene - September 29th, 2010 2:59 pm
Organ Printing--Bigger than Any Transplant Story You’ve Heard Before…
Courtesy of Dr. Mercola
Download Interview Transcript
Video Time Length: 52:05
Dr. Gabor Forgacs is one of the leading experts in the world in the area of what is now called “organ printing,” where aggregates of cells for a particular organ are delivered with an ordinary (but modified) inkjet printer onto biological scaffolding gels (the “paper”).
Dr. Forgacs is a biophysicist with degrees in biology as well as advanced physics and is currently heading up a biophysics lab called Forgacslab at the University of Missouri-Columbia. His research focuses on the physical mechanisms in cellular and developmental biology. He wrote a book with Stuart A. Newman titled The Biological Physics of the Developing Embryo in 2005, which is the first of its kind to bridge the gap between developmental biology and physics.
Sources:
Dr. Mercola’s Comments
The number of people in need of organ transplants continues to rise faster than the number of available donors, and as a result, 19 people die every day due to the shortage. As of February 10, 2010, there were over 105,600 people waiting for an organ donation in the United States. However, from January to November 2009, just over 26,000 organ transplants took place. So it would be nothing short of miraculous if we could one day replace virtually every organ or tissue in patients’ bodies with young pristine organs, as they age or become diseased or injured. Recently, steps toward achieving this goal have advanced greatly, thanks in part to the amazing work pioneered by Dr. Gabor Forgacs.
“Beam Me a New Lung, Scottie”
Printing tissues and organs may seem like science fiction, but it really isn’t anymore. Ordinary inkjet printers are now being modified to deposit biological material, including human cells, in a controlled and efficient manner. Dr. Forgacs hopes to be able to use his organ printer to eventually build full-sized, fully functional organs that can be surgically implanted in your body. These organs might not look anything like the ones you have now, but they will perform the same functions. Of course, fully functional laboratory-grown hearts and livers are a future possibility, but that level of complexity is out of reach, for now. Forgacs’ current focus is on tubular constructs that can be used to